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Julian Pfeifle, Universitat Politècnica de Catalunya (discrete geometry, combinatorics, optimization)
Albert Ruiz, Universitat Autònoma de Barcelona (topology)
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Óscar Rivero-Salgado 9

Lefschetz properties in algebra and geometry

Mart́ı Salat Moltó 21
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Resum (CAT)
El teorema clàssic de Pascal afirma que si un hexàgon a P2(C) està inscrit en

una cònica llavors els costats oposats de l’hexàgon es troben en tres punts que

s’ubiquen sobre una recta, anomenada recta de Pascal. Zhongxuan Luo va donar

el 2007 una generalització del teorema de Pascal per a corbes de grau arbitrari.

En el present article es donen dues demostracions d’aquesta generalització. La

primera és autocontiguda i fa ús del teorema de Carnot, mentre que la segona es

basa en el teorema fonamental de Max Noether.

Abstract (ENG)
Pascal’s classical theorem asserts that if a hexagon in P2(C) is inscribed in a conic,

then the opposite sides of the hexagon lie on a straight line, called Pascal line.

Zhongxuan Luo gave in 2007 a generalization of Pascal’s theorem for curves of

arbitrary degree. In the present article, two proofs of this generalization are given.

The first one is self-contained and makes use of Carnot’s theorem, while the second

proof is based on Max Noether’s Fundamental theorem.
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Pascal’s Mystic Hexagram

Figure 1: Pascal Type theorem for n = 3.

1. Introduction

One of the classical results in projective geometry is Pascal’s theorem, also known as Pascal’s Mystic
Hexagram. This theorem, obtained by Blaise Pascal in 1640, asserts that if a hexagon in P2(C) is inscribed
in a conic, then the opposite sides of the hexagon lie on a straight line; c.f. [6, § 5.6, Cor. 1].

There are many known generalizations of Pascal’s theorem. For example, Chasles’ theorem (c.f. [3])
or the Cayley-Bacharach theorem (c.f. [5]) are generalizations of Pascal’s theorem. In [8], Zhongxuan Luo
presents another generalization of Pascal’s theorem (see Fig. 1): Let l1, l2, l3 be three non-concurrent lines
and take a collection of n � 2 points Si ⇢ li on each line, such that Si \ lj = ; for j 6= i . Choose two points
P1,i ,P2,i 2 Si on each collection and let R1,R2,R3 be the triple of points given by the Pascal mapping (see
Definition 2.11) applied to the six chosen points. Then the 3n points S1 [S2 [S3 lie on an algebraic curve
of degree n that contains none of the lines l1, l2, l3 if and only if there exists an algebraic curve of degree
n � 1 intersecting each line li in {Ri} [ Si \ {P1,i ,P2,i}.

The aim of this article is to present two di↵erent proofs of Zhongxuan Luo’s extension of Pascal’s
theorem. The first proof is elementary and makes use of a version of Carnot’s theorem; see Section 3. The
approach is similar to [8], but we do not use spline theory. The second proof is based on Max Noether’s
Fundamental theorem; see Section 4.

Throughout this paper we work in the complex projective plane P2(C) and we set a projective reference
R = {A1,A2,A3;O}, so that A1 = (1 : 0 : 0), A2 = (0 : 1 : 0), A3 = (0 : 0 : 1) and O = (1 : 1 : 1).
Observe that then A2,3 = OA1 \ A2A3 = (0 : 1 : 1), A3,1 = OA2 \ A3A1 = (1 : 0 : 1), and A1,2 =
OA3 \ A1A2 = (1 : 1 : 0), where for points A,B 2 P2(C), we mean AB to be the projective line that joins
A and B . Moreover, we set l1 = A2A3, l2 = A3A1 and l3 = A1A2 to be the sides of the projective triangle
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A1A2A3 with vertices at points A1,A2,A3.

2. An extension of Carnot’s theorem

In this section we review a generalization of Carnot’s and Menelaus’s theorems, which allows to determine
whether a certain configuration of points lies on an algebraic curve of a given degree. We also introduce
some constructions from [8] that appear in the generalization of Pascal’s theorem.

Definition 2.1. Given points P1, ... ,Pr 2 AiAj\{Ai ,Aj}, where i , j 2 {1, 2, 3}, i 6= j . We define the charac-
teristic ratio of P1, ... ,Pr with respect to the reference R to be [Ai ,Aj ;P1, ... ,Pr ]R =

Qr
k=1(Ai ,Aj ,Ai ,j ,Pk),

where (Ai ,Aj ,Ai ,j ,Pk) denotes the cross ratio; c.f. [4, § 5.2].

The notion of characteristic ratio defined in [8] and the one defined in Definition 2.1 are inverse to each
other.

Example 2.2. Let Pk = (0 : �k : 1) 2 A2A3 with �k 2 C \{0}, k = 1, ... , r . Then, [A2,A3;P1, ... ,Pr ]R =Qr
k=1(A2,A3,A2,3,Pk) =

Qr
k=1 �k .

With this notation at hand, Menelaus’s theorem (c.f. [7]) and Carnot’s theorem (c.f. [2]) can be stated
as follows.

Theorem 2.3 (Menelaus’s Theorem). Let Pi 2 li , i = 1, 2, 3, be points di↵erent from A1,A2 and A3.
Then, P1,P2 and P3 are collinear if and only if [A2,A3;P1]R [A3,A1;P2]R [A1,A2;P3]R = �1.

Theorem 2.4 (Carnot’s Theorem). Let P1,P2 2 l1, P3,P4 2 l2, and P5,P6 2 l3 be six distinct points
di↵erent from A1,A2 and A3. Then, P1,P2, ... ,P6 lie on a conic disjoint with {A1,A2,A3} if and only if
[A2,A3;P1,P2]R [A3,A1;P3,P4]R [A1,A2;P5,P6]R = 1.

The next theorem is a natural generalization of Menelaus’s and Carnot’s theorems to curves of arbitrary
degree. It is called Carnot’s theorem in [1] and is equivalent to [8, Thm. 4.4]. For completeness we provide
a proof here.

Theorem 2.5. Let Si = {P1,i , ... ,Pn,i} be a collection of n di↵erent points of li \ {A1,A2,A3}, i = 1, 2, 3.
Then, S1 [ S2 [ S3 lie on an algebraic curve of degree n disjoint with {A1,A2,A3} if and only if

[A2,A3;P1,1, ... ,Pn,1]R [A3,A1;P1,2, ... ,Pn,2]R [A1,A2;P1,3, ... ,Pn,3]R = (�1)n.

Proof. Recall that the cases n = 1 and n = 2 are Menelaus’s theorem and Carnot’s theorem respectively.
Then we can assume that n � 3. We denote

C[X ,Y ,Z ]n = {F 2 C[X ,Y ,Z ]; F homogeneous polynomial of degree n} .

With this in hand, we define the map ' : C[X ,Y ,Z ]n
.
(XYZ ) ! C[Y ,Z ]n ⇥ C[X ,Z ]n ⇥ C[X ,Y ]n such

that '([F (X ,Y ,Z )]) = (F (0,Y ,Z ),F (X , 0,Z ),F (X ,Y , 0)).

Clearly, ' is well defined and linear. Let us see that it is also injective: if [F ] 2 ker('), then
'([F (X ,Y ,Z )]) = (F (0,Y ,Z ),F (X , 0,Z ),F (X ,Y , 0)) = (0, 0, 0). Thus, X ,Y and Z divide F . There-
fore, [F ] = [0].

3Reports@SCM 4 (2018), 1–8; DOI:10.2436/20.2002.02.14.
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Hence, ' is an isomorphism over its image. We claim that the image of ' is exactly the set Mn ⇢

C[Y ,Z ]n ⇥ C[X ,Z ]n ⇥ C[X ,Y ]n defined as

Mn :=

8
<

:

0

@
X

i+j=n

Bi ,jY
iZ j ,

X

i+j=n

Ci ,jX
iZ j ,

X

i+j=n

Di ,jX
iY j

1

A ; Bn,0 = D0,n,B0,n = C0,n,Cn,0 = Dn,0

9
=

; .

Clearly, Im(') ✓ Mn. Moreover, by computing dimensions, we find

dimC
⇣
C[X ,Y ,Z ]n

.
(XYZ )

⌘
= 3n = dimC(C[Y ,Z ]n) + dimC(C[X ,Z ]n)

+ dimC(C[X ,Y ]n)� 3 = dimC(Mn).

It follows that Im(') = Mn.

Let Pi ,1 = (0 : ai : 1), Pi ,2 = (1 : 0 : bi ), and Pi ,3 = (ci : 1 : 0) with ai , bi , ci 2 C \ {0}, i = 1, 2, ... , n.
Note that, by degree reasons, any curve of degree n containing S1 [ S2 [ S3 and not containing l1, l2 nor
l3 must be disjoint with {A1,A2,A3}. Such a curve exists if and only if

 
�1

nY

i=1

(aiZ � Y ), �2

nY

i=1

(biX � Z ), �3

nY

i=1

(ciY � X )

!
2 Mn, (1)

for some �1,�2,�3 2 C \ {0}. According to the definition of Mn, a necessary and su�cient condition
for (1) to be true is that the following system

8
<

:

�1
Qn

i=1 ai = (�1)n�2,
(�1)n�1 = �3

Qn
i=1 ci ,

�2
Qn

i=1 bi = (�1)n�3,
(2)

has a non-trivial solution for �1,�2,�3. However, the system (2) has a non-trivial solution if and only if
(�1)n =

Qn
i=1 aibici = [A2,A3;P1,1, ... ,Pn,1]R [A3,A1;P1,2, ... ,Pn,2]R [A1,A2;P1,3, ... ,Pn,3]R . This com-

pletes the proof.

Next, we introduce some notions from [8] that will be needed in the generalization of Pascal’s theorem.

Definition 2.6. The characteristic map �i ,j : AiAj ! AiAj relative to Ai ,Aj ,Ai ,j is the projective involution
that satisfies �i ,j(Ai ) = Aj , �i ,j(Aj) = Ai , and �i ,j(Ai ,j) = Ai ,j , where i , j = 1, 2, 3, i 6= j .

Observation 2.7. If P = �i ,j(Q) is the image of Q under the characteristic map relative to Ai ,Aj ,Ai ,j ,
then [Ai ,Aj ;P ,Q]R = (Ai ,Aj ,Ai ,j ,P)(Ai ,Aj ,Ai ,j ,Q) = 1.

An interesting fact is that if we take a point in each side of a triangle, and we consider their respective
images of the characteristic map relative to each side, then these six points lie on a conic. This property
will take an important role in Section 4.

Proposition 2.8. Let P1 2 l1, P2 2 l2 and P3 2 l3 be three points di↵erent from A1,A2,A3. Then, P1,
P2, P3, �2,3(P1), �3,1(P2) and �1,2(P3) lie on a conic.

Proof. By Observation 2.7, [A2,A3;�2,3(P1),P1]R = [A3,A1;�3,1(P2),P2]R = [A1,A2;�1,2(P3),P3]R = 1.
Then, the result follows by Carnot’s theorem.

http://reportsascm.iec.cat4
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The following results contain basic properties of the characteristic map; c.f. [8, Cor. 3.7, 3.9].

Proposition 2.9. Any three distinct points P1 2 l1, P2 2 l2, and P3 2 l3 di↵erent from A1,A2,A3 are
collinear if and only if �2,3(P1), �3,1(P2), and �1,2(P3) are collinear.

Proof. Let P1 = (0 : a : 1), P2 = (1 : 0 : b), and P3 = (c : 1 : 0), with a, b, c 2 C \ {0}. Then,
�2,3(P1) = (0 : 1 : a), �3,1(P2) = (b : 0 : 1), and �1,2(P3) = (1 : c : 0). Menelaus’s theorem asserts that
a necessary and su�cient condition of P1,P2,P3 to be collinear is that

�1 = [A2,A3;P1]R [A3,A1;P2]R [A1,A2;P3]R = abc . (3)

Similarly, their images under their corresponding characteristic map are collinear if and only if

�1 = [A2,A3;�2,3(P1)]R [A3,A1;�3,1(P2)]R [A1,A2;�1,2(P3)]R =
1

abc
. (4)

Since both equalities (3) and (4) are equivalent, this completes the proof.

Proposition 2.10. Let P1,P2 2 l1, P3,P4 2 l2, and P5,P6 2 l3 be any six distinct points di↵erent from
A1,A2,A3. Then, P1,P2, ... ,P6 lie on a conic if and only if their images by the corresponding characteristic
map lie on a conic as well.

Proof. Let P1 = (0 : a1 : 1), P2 = (0 : a2 : 1), P3 = (1 : 0 : b1), P4 = (1 : 0 : b2), P5 = (c1 : 1 : 0), and
P6 = (c2 : 1 : 0), with ai , bi , ci 2 C \ {0}, i = 1, 2. Then, �2,3(P1) = (0 : 1 : a1), �2,3(P2) = (0 : 1 : a2),
�3,1(P3) = (b1 : 0 : 1), �3,1(P4) = (b2 : 0 : 1), �1,2(P5) = (1 : c1 : 0), and �1,2(P6) = (1 : c2 : 0). By
Carnot’s theorem, the six points P1,P2, ... ,P6 lie on a conic if and only if

1 = [A2,A3;P1,P2]R [A3,A1;P3,P4]R [A1,A2;P5,P6]R = a1a2b1b2c1c2. (5)

Similarly, their images under their corresponding characteristic map lie on a conic if and only if

1 = [A2,A3;�2,3(P1),�2,3(P2)]R [A3,A1;�3,1(P3),�3,1(P4)]R

⇥ [A1,A2;�1,2(P5),�1,2(P6)]R =
1

a1a2b1b2c1c2
.

(6)

Since both equalities (5) and (6) are equivalent, this completes the proof.

The following construction from [8] plays a crucial role in Zhongxuan Luo’s generalization of Pascal’s
theorem.

Definition 2.11. The Pascal mapping is the map  := (�2,3⇥�3,1⇥�1,2)��, where � : (l1 \{A2,A3})2⇥
(l2 \ {A3,A1})2 ⇥ (l3 \ {A1,A2})2 ! l1 ⇥ l2 ⇥ l3 satisfies

�((P1,P2), (P3,P4), (P5,P6)) = {P1P2 \ P4P5,P3P4 \ P6P1,P5P6 \ P2P3}.

If we denote Q1 = P1P2\P4P5, Q2 = P3P4\P6P1, and Q3 = P5P6\P2P3 then,  ((P1,P2), (P3,P4), (P5,P6)) =
{�2,3(Q1),�3,1(Q2),�1,2(Q3)}.

5Reports@SCM 4 (2018), 1–8; DOI:10.2436/20.2002.02.14.
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3. A Pascal type theorem

In this section we present the generalization of Pascal’s theorem given in [8]. We give an elementary
proof based on the results of the previous section. In Section 4 we will give a second proof using Max
Noether’s Fundamental theorem. First let us recall the complete version of Pascal’s original theorem. For
completeness, we provide a proof here based on Menelaus’s and Carnot’s theorems.

Theorem 3.1. Let P1,P2 2 l1, P3,P4 2 l2, and P5,P6 2 l3 be six distinct points, all of them di↵erent from
A1,A2,A3, and let Q1 = P1P2 \ P4P5, Q2 = P3P4 \ P6P1, and Q3 = P5P6 \ P2P3. Then, P1,P2, ... ,P6

lie on a conic if and only if Q1,Q2,Q3 are collinear.

Proof. Let P1 = (0 : a1 : 1), P2 = (0 : a2 : 1), P3 = (1 : 0 : b1), P4 = (1 : 0 : b2), P5 = (c1 : 1 : 0), and
P6 = (c2 : 1 : 0), with ai , bi , ci 6= 0, i = 1, 2; it follows that Q1 = (0 : �1 : b2c1), Q2 = (a1c2 : 0 : �1),
and Q3 = (�1 : b1a2 : 0). By Carnot’s theorem, P1,P2, ... ,P6 lie on a conic disjoint from {A1,A2,A3} if
and only if

1 = [A2,A3;P1,P2]R [A3,A1;P3,P4]R [A1,A2;P5,P6]R = a1a2b1b2c1c2. (7)

Similarly, by Menelaus’s theorem, we have that a necessary and su�cient condition for Q1,Q2,Q3 to be
collinear is that

�1 = [A2,A3;Q1]R [A3,A1;Q2]R [A1,A2;Q3]R =
�1

b2c1

�1

a1c2

�1

b1a2
. (8)

Since both equalities (7) and (8) are equivalent, this proves the theorem.

Notice that by Proposition 2.9, if Q1,Q2,Q3 lie on the same line, then the points in the Pascal mapping
 ((P1,P2), (P3,P4), (P5,P6)) are also collinear points. It is precisely this version of Pascal’s theorem that
was generalized by Zhongxuan Luo to higher degrees. The precise statement is the following.

Theorem 3.2 (Pascal Type Theorem). Let Sj = {Pi ,j}
n
i=1 be a collection of n � 2 distinct points on the

set lj \ {A1,A2,A3}, j = 1, 2, 3. Let us choose two points on each collection Sj , and let R1,R2,R3 be the
triple given by the Pascal mapping applied to the six chosen points. Then, the 3n points S1 [ S2 [ S3 lie
on an algebraic curve of degree n disjoint with {A1,A2,A3} if and only if there exists an algebraic curve of
degree n�1 disjoint with {A1,A2,A3} which contains R1,R2,R3 and the 3(n�2) points from S1[S2[S3
that have not been chosen.

Proof. Let us take ai , bi , ci 2 C \ {0} and Pi ,1 = (0 : ai : 1), Pi ,2 = (1 : 0 : bi ), and Pi ,3 = (ci : 1 : 0) for
every i = 1, ... , n. Without loss of generality, let us choose the points P1,1, P2,1, P1,2, P2,2, P1,3 and P2,3,
to apply the Pascal mapping; see Fig. 1 above. Then,

 ((P1,1,P2,1) , (P1,2,P2,2) , (P1,3,P2,3)) = {R1,R2,R3}, (9)

where R1 = �2,3(Q1) = (0 : b2c1 : �1), R2 = �3,1(Q2) = (�1 : 0 : a1c2), and R3 = �1,2(Q3) = (b1a2 :
�1 : 0), with Q1 = P1,1P2,1 \ P2,2P1,3, Q2 = P1,2P2,2 \ P2,3P1,1, and Q3 = P1,3P2,3 \ P2,1P1,2.

By Theorem 2.5, the 3n points S1[S2[S3 lie on an algebraic curve of degree n disjoint with {A1,A2,A3}

if and only if

(�1)n = [A2,A3;P1,1, ... ,Pn,1]R [A3,A1;P1,2, ... ,Pn,2]R [A1,A2;P1,3, ... ,Pn,3]R

=
nY

i=1

(A2,A3,A2,3,Pi ,1)(A3,A1,A3,1,Pi ,2)(A1,A2,A1,2,Pi ,3) =
nY

i=1

aibici .
(10)

http://reportsascm.iec.cat6
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Similarly, there exists an algebraic curve of degree n�1 disjoint with {A1,A2,A3} which contains R1,R2,R3

and the 3(n � 2) points from S1 [ S2 [ S3 that have not been chosen if and only if

(�1)n�1 = [A2,A3;P3,1, ... ,Pn,1,R1]R [A3,A1;P3,2, ... ,Pn,2,R2]R [A1,A2;P3,3, ... ,Pn,3,R3]R

=

"
(A2,A3,A2,3,R1)

nY

i=3

(A2,A3,A2,3,Pi ,1)

#"
(A3,A1,A3,1,R2)

nY

i=3

(A3,A1,A3,1,Pi ,2)

#

⇥

"
(A1,A2,A1,2,R3)

nY

i=3

(A1,A2,A1,2,Pi ,3)

#
= �

nY

i=1

aibici .

(11)

Since both equalities (10) and (11) are equivalent, this completes the proof.

4. A Pascal type theorem and Max Noether’s fun-
damental theorem

We give a new proof of Theorem 3.2 based on Max Noether’s Fundamental theorem; in particular, we will
make us of a corollary of it. To do so, we need a few basic notions about algebraic curves in P2(C); for
more details, see [6].

Max Noether’s Fundamental theorem is concerned with the following question (c.f. [6, § 5.5]): suppose
C ,C 0 are two projective plane curves with no common factors, and C 00 is another curve satisfying C \C 0

⇢

C \C 00, when counted with multiplicity. So, when is there a curve that intersects C in the points of C \C 00

that are not in C \ C 0?

For our purpose, we do not use directly Max Noether’s Fundamental theorem, but we use a corollary
of it. First, if C , C 0 are projective plane curves with no common components, the intersection cycle C ·C 0

is defined as the formal sum
C · C 0 =

X

P2C\C 0

mP(C ,C 0)P ,

where mP(C ,C 0) is the multiplicity of the point P in C \ C 0; c.f. [6, § 5.5]. In particular, mP(C ,C 0) = 0
if and only if P /2 C \ C 0.

If C ,C 0 are projective plane curves of degree n and m respectively, CC 0 is the projective plane curve of
degree n +m consisting on the union of C and C 0.

With this notation at hand, we are in conditions to state the corollary of Max Noether’s Fundamental
theorem; c.f. [6, § 5.5, Cor. 2].

Theorem 4.1. Let C, C 0, C 00 be projective plane curves such that C 0 and C 00 have no common component
with C. If all the points of C\C 0 are simple points of C and C ·C 00

� C ·C 0 (i.e., mP(C ,C 00) � mP(C ,C 0) for
every P 2 C), then there is a curve � of degree deg(�) = deg(C 00)�deg(C 0) such that C ·� = C ·C 00

�C ·C 0.

Now we are in conditions to give the new proof of Theorem 3.2.

Proof. (Pascal Type Theorem) Let us take the same notation as in (9). Here is when Proposition 2.8
becomes crucial, since it asserts that the points Q1,Q2,Q3,R1,R2,R3 lie on a conic; let �2 be that conic.
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Let C = (P2,1P1,2) (P2,2P1,3) (P2,3P1,1) be the cubic generated by the three opposites sides, disjoint with
{A1,A2,A3}, of the hexagon with vertices P1,1,P2,1,P1,2,P2,2,P1,3,P2,3.

First assume that the 3n points S1 [ S2 [ S3 lie on an algebraic curve �n of degree n disjoint with
{A1,A2,A3} and consider the algebraic curve �n+2 = �2�n of degree n + 2. Then, we have that

�n+2 · l1l2l3 =
nX

i=1

(Pi ,1 + Pi ,2 + Pi ,3) + Q1 + Q2 + Q3 + R1 + R2 + R3,

and C · l1l2l3 = P1,1+P2,1+P1,2+P2,2+P1,3+P2,3+Q1+Q2+Q3. Therefore, �n+2 · l1l2l3�C · l1l2l3 =Pn
i=3 (Pi ,1 + Pi ,2 + Pi ,3) + R1 + R2 + R3.

By Theorem 4.1, there exists a curve � of degree deg(�) = deg(�n+2) � deg(C ) = n � 1 such that
� · l1l2l3 =

Pn
i=3 (Pi ,1 + Pi ,2 + Pi ,3)+R1+R2+R3. So, � is an algebraic curve of degree n�1 that passes

through the 3(n � 1) points P3,1, ... ,Pn,1,P3,2, ... ,Pn,2,P3,3, ... ,Pn,3,R1,R2,R3.

Reciprocally, suppose that there exists an algebraic curve �
0
n�1 of degree n�1 disjoint with {A1,A2,A3}

that contains R1,R2,R3 and the 3(n � 2) points from S1 [ S2 [ S3 that have not been chosen. Consider
the algebraic curve �

0
n+2 = C�

0
n�1 of degree n + 2. Then, we have that

�
0
n+2 · l1l2l3 =

nX

i=1

(Pi ,1 + Pi ,2 + Pi ,3) + Q1 + Q2 + Q3 + R1 + R2 + R3,

and �2 · l1l2l3 = Q1+Q2+Q3+R1+R2+R3. Therefore, �
0
n+2 · l1l2l3��2 · l1l2l3 =

Pn
i=1 (Pi ,1 + Pi ,2 + Pi ,3).

By Theorem 4.1, there exists a curve �
0
of degree deg(�

0
) = deg(�

0
n+2) � deg(�2) = n such that

�
0
· l1l2l3 =

Pn
i=1 (Pi ,1 + Pi ,2 + Pi ,3). So, �0 is an algebraic curve of degree n that passes through the 3n

points P1,1, ... ,Pn,1,P1,2, ... ,Pn,2,P1,3, ... ,Pn,3. This completes the proof.
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1. Introduction

During the first half of the 1960s, mathematicians Bryan Birch and Peter Swinnerton-Dyer formulated,
after having performed di↵erent numerical computations, a conjecture relating the rank of an elliptic curve
over a number field with the order of vanishing of the corresponding L-series at the point s = 1, lying
outside the region of convergence of the defining series. The conjecture asserts that the rank of the elliptic
curve (also called the algebraic rank) agrees with the order of vanishing of the L-series at s = 1 (the analytic
rank), and moreover, it gives a formula for the first non-zero coe�cient in the Taylor development of this
L-series. At that time, not much knowledge concerning the theory of elliptic curves was available. In the
thirties, Mordell had proved the finiteness of the rank for an elliptic curve defined over Q, and then Weil
generalized the proof to the case of number fields. It was also Weil who did a more detailed study of the
L-series attached to a projective variety, which allowed to have a broaden perspective of the real meaning
of this analytic object. There was a lot of progress along the 20-th century, that culminated with the proof
of the modularity theorem, first by Taylor and Taylor–Wiles for the case of elliptic curves over Q with
semistable reduction, and then in the general case (but again only over Q) by Breuil, Conrad, Diamond
and Taylor. This theorem allows to attach to an elliptic curve a normalized modular form of weight two
with the same L-series, which turns out to be useful in many di↵erent settings (for instance, to prove the
analytic continuation and the functional equation of the L-series of the elliptic curve).

However, in spite of all this great progress in number theory, the conjecture of Birch and Swinnerton-
Dyer remains unsolved and only some special cases have been proved. The most remarkable result was
obtained by Gross–Zagier and Kolyvagin, who proved the conjecture in analytic rank at most one. For
that, they made use of what is known as an Euler system, a compatible collection of cohomology classes
along a tower of fields. In this case, it is the Euler system of Heegner points. However, Heegner points are
futile in analytic rank greater than one since they are torsion. In those settings, new tools based on p-adic
methods have recently been introduced and the interested reader is referred to [1, 2, 3, 7, 9] for a wider
perspective.

The organization of this note is as follows. First of all, Section 2 gives a motivation for the conjecture
based on the parallelism with the finiteness results available for the group of units of a number field. Our
last aim in this section is to present the statement of the conjecture. Then, in Section 3 we state some of
the most interesting results and generalizations of the BSD conjecture, particularly the so-called equivariant
BSD. Finally, Section 4 explores some of the new insights when the analytic rank is greater than one, and
in particular we recover the elliptic Stark conjecture, where the parallelism between units in number fields
and points in elliptic curves is again present. For some results about elliptic curves, L-series and modular
curves that we freely use along the exposition, we refer to the excellent book [4].

2. Motivation for the BSD conjecture

2.1 First analogies

There are two main reason that make the BSD conjecture specially appealing at first sight: it can be seen
as a local-global principle, and at the same time, it makes a link between the algebraic side (the rank of the
elliptic curve) and the analytic side (the L-function). We go more carefully through each of these points:

http://reportsascm.iec.cat10
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(i) The BSD conjecture can be understood as a local-global principle. The L-function is an analytic
object obtained by gluing di↵erent pieces that are constructed just counting points over finite fields.
From it, we expect to derive some properties about the global behavior (the rank of the elliptic curve
over Q or more generally over a number field). This follows the spirit of Hasse–Minkowski theorem,
which states that a homogeneous quadratic form represents 0 over Q if and only if it represents 0
in all the completions of the rational numbers (the real numbers R and the p-adic fields Qp, for the
di↵erent rational primes p).

However, we know that the Hasse principle is not true for cubic curves, as Selmer showed with his
celebrated example 3x3 + 4y3 + 5z3 = 0, so in general we cannot expect a generalization of this
result. This would be something similar to expect that one can prove that a polynomial with integer
coe�cients is irreducible over Q just by knowing that is irreducible over all the finite fields Fp. Some
examples showing that this is false are the polynomials x4 + 1 or x4 � 10x2 + 1 (in particular, any
irreducible degree four polynomial whose Galois group over Q is Z/2Z ⇥ Z/2Z, or more generally
any irreducible degree n polynomial whose Galois group does not contain an n-cycle). The point is
that there is an ubiquitous group, the Tate–Shafarevich group, that measures the failure to the Hasse
principle, and we expect that for elliptic curves this group is finite.

(ii) The BSD conjecture gives a relation between the algebraic or geometric side (the rank of the el-
liptic curve) and the analytic side (the L-series). This gives a connection with another remarkable
conjecture, the Bloch–Kato conjecture, that also establishes a link between the rank of vanishing
of an L-series and the dimension of appropriate cohomology groups. In particular, we will see that
when trying to generalize the Gross–Zagier formula to analytic rank greater than one we necessarily
pass through some construction of families of compatible cohomology classes, for which some explicit
reciprocity laws connecting these classes with appropriate L-functions are available. It turns out that
proving this kind of equalities is easier in the p-adic world than in the complex one.

As we have suggested, elliptic curves over a number field are not as easy to understand as one may
expect at first sight, so it is natural to look for simpler analogies, such as the ring of integers of a number
field. There are two main remarkable results that come from Minkowski’s theorem, that asserts that a set
in Rn which is big enough must contain a rational point: these two results are the finiteness of the class
number and the finite generation of the group of units. We would like to look for analogues in the case of
an elliptic curve:

(i) The analogue of the rank of the group of units is the rank of the elliptic curve. Both of them are
known to be finite and in fact the proof of the Mordell–Weil theorem makes use of the classical result
for number fields. This last analogy is specially relevant. We will see how the L-series of the number
field encodes information about the rank of the group of units, and we expect the same for elliptic
curves via the BSD conjecture.

(ii) One may think that the natural analogue of the class group is the Picard group, that can be defined
for any ringed space X as the first cohomology group H1(X ,O⇥

X ). In the case of curves, it turns
out to be isomorphic to the jacobian of the curve, that for an elliptic curve is the elliptic curve itself.
However, there is another object that we later present, the Tate–Shafarevich group, which turns out
to be a more appropriate analogue. However, proving its finiteness is equally hard and again, results
are limited to situation of analytic rank at most one.
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2.2 The L-function of an elliptic curve

L-series are analytic functions attached to motives, which are essentially pieces of the cohomology of a
variety over a field. In particular, when M is a motive over Q with coe�cients in a field E ⇢ C, we may
attach to it the complex L-function L(M, s) =

Q
p PM,p(p�s)�1, where the product runs over all rational

primes and PM,p is the characteristic polynomial (suitably normalized) of the Frobenius at p, Frobp, acting
on the motive M of weight w . It converges on <(s) > 1 + w/2.

The easiest example is concerned with a Dirichlet character � : (Z/NZ)⇥ ! C⇥. In this case, the
identification (Z/NZ)⇥ ' Gal(Q(e2⇡i/N)/Q) allows us to work from the perspective of Galois representa-
tions. In a natural way, one can construct ⇢� : GQ ! C⇥ ' GL

1

(C) as the composition of the projection
GQ ! Gal(Q(e2⇡i/N)/Q) with the character �. With this approach, the local factor PM,p(p�s) is nothing
but the characteristic polynomial of ⇢�(Frobp), for a choice of Frobp. Alternatively, this local factor corre-
sponds to the Frobenius acting on the p-torsion of C⇥ (the multiplicative group generated by ⇣p), and it

is just 1/(1� �(p)p�s) (as a Galois character, � acts as ⇣p 7! ⇣�(p)p ). Then, we obtain the L-function

L(�, s) =
Y

p-N

1

1� �(p)p�s
,

that in the particular case that � is identically one agrees with the usual zeta-function. This function can
be analytically continued to the whole complex plane (this is a classical result in complex analysis).

This same study can be done for a general number field, and then the corresponding L-function encodes
information about all the primes of that number field. In particular, given a number field K and ⇢ : GK !
GL(V ),

L(⇢, s) =
Y

p⇢OK

1

P⇢,p(NK/Q(p)�s)
.

When ⇢ is the trivial representation, we obtain the usual Dedekind zeta function of the number field K ,
⇣K . It converges absolutely for <(s) > 1 and it extends to a meromorphic function defined for all complex
numbers s and with a simple pole at s = 1. The following result is a wonderful analogy for BSD, since
we can see how in some sense the value at s = 1 allows us to recover arithmetic information. This is the
so-called class number formula:

lim
s!1

(s � 1) · ⇣K (s) = 2r1 · (2⇡)r2 · hK · RegK
wK ·p|DK |

,

where we have made use of the usual conventions of writing r
1

, r
2

for the number of real embeddings and
half of the complex embeddings of K , respectively; hK for the class number; RegK for the regulator of the
number field; wK for the number of roots of unity in K and DK for the discriminant of K/Q. Many cases
of this result can be more deeply analyzed in the realm of class field theory.

In the case of an elliptic curve (say over Q), the way to introduce the L-function is to consider the
Galois action over the so-called Tate module. The construction we describe may seem ad-hoc but it really
works in a more general framework and can be extended to more general algebraic varieties. Recall that
in the number field case we have used the p-torsion of C⇥ (the group generated by ⇣p), so now we can
consider the p-torsion of an elliptic curve. Take E/Q an elliptic curve. When p is a prime of good reduction
(the cubic curve modulo p is still non-singular), it turns out that the p-torsion over Q̄ (denoted by E [p])
is a finite group isomorphic to Z/pZ⇥ Z/pZ which respects the action of the Galois group, so we have a
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morphism ⇢E : GQ ! GL
2

(Z/pZ). Since this can also be done for E [pn], taking projective limits we get a
representation (that we denote with the same letter) ⇢E : GQ ! GL

2

(Zp). This projective limit is called
the Tate module.

It is quite easy to prove (see [13, Ch. 5] for more details) that the characteristic polynomial of Frobp
acting on the p-torsion evaluated at p�s is 1� ap(E )p�s + p1�2s for the primes of good reduction. Then,

L(E , s) =
Y

p good

1

1� app�s + p1�2s

Y

p bad

1

1� app�s
,

where the extra factors correspond to the primes of bad reduction. A priori, it may not be clear that
this function could be analytically continued, and in fact this is a consequence of the work of Wiles and
others towards the proof of the modularity theorem. The idea is based on the introduction of the so-called
modular forms, that are functions on the upper half-plane satisfying certain transformation properties, the
so-called modular forms. The symbol S

2

(N) arises for the weight two modular forms of level N. vanishing
at infinity.

Theorem 2.1 (Modularity). Let E be an elliptic curve over Q of conductor N. Then, there exists a modular
form f 2 S

2

(N) such that L(E , s) = L(f , s).

This means that the coe�cients ap(E ) = p + 1 � ]E (Fp) agree with the Fourier coe�cients of the
modular form f .

Corollary 2.2. The L-function L(E , s) has an analytic continuation and an integral representation of the
form

(2⇡)�s�(s)L(E , s) =

Z 1

0

f (it)ts�1dt.

2.3 Curves of genus zero

Before giving our first formulation of BSD, we can try to study another analogy for curves of genus zero.
In particular, let us investigate some local-global properties for conics in a di↵erent setting. Consider for
instance the circle x2 + y2 = 1 and count solutions modulo a certain prime. These solutions can be
parameterized following the usual method of considering lines through a fixed point of the conic. That
way, we get that all the solutions are given in terms of a variable t in the form

(x , y) =
⇣ t2 � 1

t2 + 1
,

2t

t2 + 1

⌘
,

so the number of solutions is p�1 or p+1, since t2+1 has either zero or two solutions modulo p depending
on the residue of p modulo 4 (this works for odd p). Then, we can consider the proportion between the
number of points modulo a certain prime and the size of the prime, and multiplying all the quotients we
directly get

Y

p

p

Np
=

1X

n=1

(�1)n+1

2n � 1
=

⇡

4
,

where the last equality follows from Wallis formula. If we denote by NR the measure of the “real solutions”
(the length of the unit circle), we get a very curious result:

Y

p

Np

p
· NR =

4

⇡
· 2⇡ = 8,
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that is precisely twice the number of integer solutions of x2 + y2 = 1.

Observe that for counting the number of points over Fp in the case of elliptic curves, an heuristic
argument (that may seem näıve at first sight) is the following. Taking the Weierstrass equation y2 =
x3 + Ax + B =: f (x), for each value of x modulo p we can obtain either that f (x) = 0 (one solution),
that f (x) is a non-zero square (two solutions) or that it is a non-square (zero solutions). Since these two
last cases occur the same number of times, we expect in average p + 1 solutions (considering the point
at infinity). The truth is that Hasse’s bound is precisely ap = |p + 1 � #E (Fp)| < 2

p
p, which can be

seen as some kind of Riemann hypothesis for elliptic curves, since from here we may define a certain zeta
function, and Hasse’s bound implies that the zeros of this zeta function has real part 1/2. Then, it makes
sense again to consider the quantity

f (T ) =
Y

pT

Np

p
.

One of the first versions preceding BSD was the following one:

Conjecture 2.3. For each elliptic curve E over Q, there exists a constant C such that limT!+1 f (T ) =
C · log(T )r , where r is the rank of the elliptic curve. Roughly speaking, “many points over the di↵erent
Fp force many points over Q”.

2.4 The BSD conjecture

At this point of the discussion, we are in conditions of presenting the extended version of the BSD conjecture.
However, the reader should note that it is enough to prove that the rank of E/Q equals the order of vanishing
at s = 1 of L(E , s) in order to receive the prize of the Clay Mathematical Institute.

Conjecture 2.4. Let r be the rank of E (Q) and P
1

, ... ,Pr be linearly independent elements of E (Q).
Then,

lim
s!1

L(E , s)

(s � 1)r
=

⇣
⌦

Y

p bad

cp
⌘Sha(E/Q) det(hPi ,Pji)

(#E
tors

)2
,

where ⌦ =
R
E(R) |!| is the integral of the canonical di↵erential; cp corresponds to the bad reduction prime

p raised to some explicit power and Sha(E/Q) is the order of the Tate–Shafarevich group.

This Tate–Shafarevich group is an important actor in the di↵erent versions of BSD and measures the
failure to the Hasse principle. To properly introduce it, let us define it together with the n-th Selmer group,
S (n)(E/Q).

S (n)(E/Q) = {� 2 H1(Q,E [n]) | for all p, �p comes from E (Qp)}

= ker
⇣
H1(Q,E [n]) !

Y

p=2,3,...,1
H1(Qp,E )

⌘
,

Sha(E/Q) = ker
⇣
H1(Q,E ) !

Y

p=2,3,...,1
H1(Qp,E )

⌘
.

These two groups are related via the short exact sequence

0 ! E (Q)/nE (Q) ! S (n)(E/Q) ! Sha(E/Q)[n] ! 0.
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It is conjectured that Sha(E/Q) is finite. This group turns out to appear in many other situations and
in general Selmer groups are a powerful tool very related with the Euler systems we will briefly present
at the end of our discussion. They also arise in the formulation of the Iwasawa main conjecture, another
milestone in number theory.

3. Results and generalizations

3.1 The Gross–Zagier, Kolyvagin theorem

Our next aim is to explore some of the known results around BSD conjecture. In 1976, Coates and Wiles
proved that the conjecture was true in analytic rank zero (that is, when L(E , 1) 6= 0, the algebraic rank is
zero) for elliptic curves with complex multiplication (informally, curves with many endomorphisms).

The most remarkable result about BSD was proved by Gross–Zagier and Kolyvagin.

Theorem 3.1 (Gross–Zagier, Kolyvagin). Let E be an elliptic curve over Q. Then,

(i) if L(E , 1) 6= 0, then #E (Q) < 1 (the algebraic rank is zero);

(ii) if L(E , 1) = 0 and L0(E , 1) 6= 0, then the algebraic rank of the elliptic curve is one and there is an
e�cient method for calculating E (Q).

In both cases Sha(E/Q) is finite.

The proof of this result requires the introduction of an extremely powerful tool, the so-called Heegner
points. In general, for an imaginary quadratic extension K of Q, we write Hn for the ring class field of K
of conductor n. A Heegner system attached to (E ,K ) is a collection of points Pn 2 E (Hn) indexed by
integers n prime to N satisfying certain (explicit) norm compatibility properties. When (E ,K ) satisfies the
Heegner hypothesis (that is, all primes dividing the conductor of E split in K/Q), there is a non-trivial
Heegner system attached to (E ,K ). Let {Pn}n be a Heegner system and let PK = TraceH

1

/K (P1

) 2 E (K ).
More generally, consider � : Gal(Hn/K ) ! C⇥ a primitive character of a ring class field extension of K of
conductor n and let

P�
n =

X

�2Gal(Hn/K)

�̄(�)P�
n 2 E (Hn)⌦ C.

The following formula provides the relation between the Heegner system {Pn} and the special values of
the complex L-series L(E/K , s) and its twists.

Theorem 3.2. Let h, in be the canonical Néron–Tate height on E (Hn) extended by linearity to a Hermitian
pairing on E (Hn)⌦ C. Then,

(i) hPK ,PK i = ⇤L0(E/K , 1);

(ii) hP�
n ,P

�̄
n i = ⇤L0(E/K ,�, 1).

Here, ⇤ means equality up to a non-zero factor that can be explicitly described.
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The remarkable fact in this story is that a non-trivial Heegner system, beyond yielding lower bounds
on the size of the Mordell–Weil group of E over ring class fields of K , also leads to upper bounds on the
Mordell–Weil group and the Shafarevich–Tate group of E/K .

Theorem 3.3. Let {Pn} be a Heegner system attached to (E ,K ). If PK is non-torsion, then

(i) the Mordell–Weil group E (K ) is of rank one, so that PK generates a finite-index subgroup of E (K );

(ii) the Shafarevich–Tate group of E/K is finite.

With these ingredients, the proof of the theorem of Gross–Zagier and Kolyvagin is relatively easy; see [4,
Ch. 10].

3.2 The equivariant BSD conjecture

As it occurs in many cases, the formulation of a stronger version of the problem can help to clarify some
questions around it. Let us explain now the so-called equivariant BSD conjecture. Let K/Q be a finite
Galois extension. Then, by the Mordell–Weil theorem E (K ) ⌦ C ⇠= �V ri

i , where r =
P

ri dim(Vi ) < 1.
That is, we have decomposed a representation into the sum of irreducible representations. Consider for the
sake of clarity K = Q(

p�D); the Galois group has just a non-trivial element, say �. Then,

E (K )⌦ C = V r
1

1

� V
r�
� = (E (Q)⌦ C)� (E (K )� ⌦ C),

where the last summand is the set of elements v in E (K )⌦C such that v̄ = �v . Observe that if P 2 E (K ),
then P + �(P) 2 E (Q) and P � �(P) 2 E (K )�.

We can mimic this decomposition for the L-series and express

L(E/K , s) =
Y

i

L(E/K ,Vi , s)
dim(Vi ),

in such a way that ords=1

L(E/K , s) =
P

ords=1

L(E/K ,Vi , s) dim(Vi ) (this Vi in the L-function refers to
the twist by a certain given representation).

Again, the simplest instance of this phenomenon is the quadratic case. There, L(E/K ,�, s) can be
seen as the L-function of what is called a quadratic twist of E , an elliptic curve that is isomorphic to E not
over Q, but over the quadratic extension K . For instance, the elliptic curves y2 = x3� x and 2y2 = x3� x
are not isomorphic over Q, but over Q(

p
2). Then, if D is the discriminant of the extension, we denote by

ED : Dy2 = x3 + Ax + B . We give a brief explanation of why in this case L(E/K , s) = L(E , s)L(ED , s),
by comparing the local factors at p, where p is a prime of good reduction.

Let np be the number of points of E and mp the number of points of ED ; write ap = p + 1� np and
bp = p + 1 � mp. When p splits in K , Dy2 = f (x) has the same number of solutions than y2 = f (x).
Then, ap = bp and each of the primes contributes to the L-function of the curve over K with the same
factor, that is present once both in the L-function of E and ED .

In the inert case, it is easy to check that np +mp = 2 + 2p and hence ap + bp = 0. Then,

(1� app
�s + p1�2s)(1� bpp

�s + p1�2s) = 1 + 2p1�2s + p2�4s + (�a2p)p
�2s .

Taking into account that when p is inert its norm is p2, what we have is that the inverse of the local factor
is 1� ap2p

�2s + p2�4s and everything gets reduced to proving that ap2 = a2p � 2p, which can be deduced
from standard properties of L-series of elliptic curves; see again [13, §5.2].
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Conjecture 3.4 (Equivariant BSD). With the previous notations, ords=1

L(E/K ,Vi , s) = dim(Vi ).

Let us briefly comment some of the cases in which this equivariant version of BSD has been proved in
analytic rank zero:

(i) ⇢ is the odd self-dual two-dimensional Galois representation induced from a ring class (or dihedral)
character of an imaginary quadratic field; this follows from the work of Gross–Zagier and Kolyvagin;

(ii) ⇢ is a Dirichlet character; this follows from the work of Kato;

(iii) ⇢ is an odd irreducible two-dimensional Galois representation satisfying mild restrictions;

(iv) ⇢ is an irreducible constituent of the tensor product of two odd irreducible two dimensional Galois
representations which is self-dual and satisfies some other mild restrictions.

4. Rank two and beyond

One of the challenges when working with BSD it to produce tools that allow us to obtain new results
in analytic rank 2 or greater. Moreover, given a Galois representation ⇢ with underlying vector space
V⇢ defined over a number field L, when the analytic rank of E ⌦ ⇢ is positive we have the objective of
constructing non-zero elements in E (H)⇢L :=

P
� �(V⇢), where � runs over a basis of HomGQ(V⇢,E (H)⌦L).

We are going to point out some of the new directions trying to emphasize new insights that can help to a
better understanding of the problem.

A great progress came with the use of p-adic methods. In 1986, Mazur, Tate and Teitelbaum published
“On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer” [11]. They comment in the
introduction that since the p-adic analogue of the Hasse–Weil L-function had been defined and also p-adic
theories analogous to the theory of the canonical height had been introduced, “it seemed to us to be an
appropriate time to embark on the project of formulating a p-adic analogue of the conjecture of Birch and
Swinnerton-Dyer, and gathering numerical data in its support [...] The project has proved to be anything
but routine”.

The first surprising aspect is the appearance of a factor that they call p-adic multiplier, which is a
simple local term not equal to any recognizable Euler factor. It can vanish at the central point and throw
o↵ the order of vanishing of the p-adic L-function at that point (exceptional case). We expect that in the
exceptional case the order of vanishing of the p-adic L-function is one greater than the order of vanishing
of the classical L-function. This agrees with the fact that when E has split multiplicative reduction at
p, one can define in a natural way the extended Mordell–Weil group, the rank of which is one greater
than the rank of the usual Mordell–Weil group. Further, we can define a p-adic height pairing on this
extended Mordell–Weil group. In this case, the formulation of BSD involves the regulator of the extended
Mordell–Weil group. In this setting, we can produce a conjectural relationship between the special value of
the first derivative of the p-adic L-function of E and the algebraic part of the special value of the classical
L-function of E . It turns out that the former quantity is the product of the latter and the factor

Lp(E ) = logp(qp(E ))/ ordp(qp(E )),

where qp(E ) is the p-adic multiplicative period of E . The quantity Lp(E ) is known as the L-invariant of
E .
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One of the most popular techniques to deal with these p-adic conjectures is the use of Euler systems.
Roughly speaking, they are collection of compatible elements of Galois cohomology classes indexed by
towers of fields. The most well-known examples are cyclotomic and elliptic units, but also Heegner points,
that has been previously presented (more precisely, Heegner points are an example of anticyclotomic Euler
system). For the study of the rank two setting, the Euler systems that are more useful are those envisaged
by Kato, also known as systems of Rankin–Selberg–Garrett type. They consist on the image under étale or
syntomic regulators of certain cycles occurring in the higher Chow groups (or K -groups) of modular curves.
At the same time, the complex L-function is replaced by its p-adic counterpart. This p-adic L-functions are
usually constructed via the interpolation of classical L-values, divided by suitable period, along a certain
interpolation region.

There are several explicit reciprocity laws relating the Perrin–Riou big-logarithm (a map interpolating
the dual exponential map and the Bloch–Kato logarithm) of the cohomology classes with special values
of p-adic L-functions lying outside the region of non-classical interpolation. This kind of results put a
link between the algebraic and analytic side, that is at the end what aims the BSD conjecture. The most
surprising idea is that in the p-adic setting we may consider certain L-function where we do not only have
the usual variable s, but a weight variable which makes the modular form f to vary in a continuous way
(we move the modular form along what is called a Hida family).

We continue now by introducing the elliptic Stark conjecture. It is a more constructive alternative to
BSD, allowing the e�cient computation of p-adic logarithms of global points. In some sense, it can be
seen as trying to unify two of the currently known constructions of global points on elliptic curves over
Q, Heegner points and the conjectural Stark–Heegner points attached to real quadratic cycles on Hp ⇥H.
Stark’s conjectures give complex analytic formulas for units in number fields (their logarithms) in term of
the leading terms of Artin L-functions at s = 0. Let g =

P
an(g)qn be a cusp form of weight one, level

N and odd character �. Consider also Hg , the field cut out by an Artin representation ⇢g and L ⇢ Q(⇣n),
the field generated by the Fourier coe�cients of g . We denote by Vg the vector space underlying ⇢g . In
this framework, Stark’s conjecture states the following.

Conjecture 4.1 (Stark). Let g be a cuspidal newform of weight one with Fourier coe�cient in L. Then,
there is a modular unit ug 2 (O⇥

Hg
⌦ L)�1=1 (where �1 stands for the complex conjugation) such that

L0(g , 0) = log(ug ).

There are some cases (the reducible one, the imaginary dihedral case), where it has been proved. The
general result is still unknown to be true.

In [5], the authors formulate some kind of analogue in the realm of points in elliptic curves. The
motivation for all this work came for the previous results around Katz’s p-adic L-function, the Mazur–
Swinnerton-Dyer p-adic L-function and in general, the various types of p-adic Rankin L-functions. Let E
be an elliptic curve attached to f 2 S

2

(N). We introduce the following notations, where � is a Dirichlet
character modulo N, with N relatively prime with a fixed p; more details can be found in [5]:

(i) Mk(Np,�) is the space of classical modular forms of weight k , level Np and character �;

(ii) M(p)
k (N,�) is the corresponding space of p-adic modular forms;

(iii) Moc

k (N,�) is the subspace of overconvergent modular forms, a p-adic Banach space where the

Hecke operator Up acts completely continuously. It satisfies Mk(Np,�) ⇢ Moc

k (N,�) ⇢ M(p)
k (N,�).
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Coleman’s theorem asserts that when h is overconvergent and ordinary of weight � 2, then it is
classical;

(iv) d = q d/dq is the Atkin–Serre d operator on p-adic modular forms;

(v) when f 2 Moc

2

(N), then F := d�1f 2 Moc

0

(N), where the d�1 refers to the limit of d t when t tends
p-adically to �1;

(vi) e
ord

:= limn Un!
p is Hida’s ordinary projection.

Let � 2 Mk(Np,�)_ and h 2 Mk(N,�). We define the so-called p-adic iterated integral of f and h
along � as

R
� f · h := �(e

ord

(F ⇥ h)) 2 Cp. Our aim would be to give an arithmetic interpretation forR
�g↵

f ·h as �g↵ 2 M
1

(Np,�)_[g↵], where this notation refers to elements having the same system of Hecke
eigenvalues as g↵. This integral can be recast as a special value of a triple product p-adic L-function. For
the sake of simplicity we must do some assumptions:

(i) certain local signs in the functional equation for L(E ,Vgh, s) are 1, and in particular ords=1

L(E ,Vgh, s)
is even;

(ii) Vgh = V
1

� V
2

�W , where ords=1

L(E ,V
1

, s) = ords=1

L(E ,V
2

, s) = 1 and L(E ,W , 1) 6= 0. BSD
predicts that V

1

and V
2

occur in E (Hgh)⌦ L with multiplicity one;

(iii) the geometric Frobenius acts on V
1

(V
2

) with eigenvalue ↵g↵h (↵g�h). Here, ↵g and �g (resp. ↵h

and �h) stand for the roots of the p-th Hecke polynomial of the modular form.

Conjecture 4.2 (Elliptic Stark). Under the above conditions,

Z

�g↵

f · h =
logE ,p(P1

) logE ,p(P2

)

logp ug↵
,

where Pj 2 Vj -isotypic component of E (Hgh)⌦ L and �pP1

= ↵g↵h · P1

, �pP2

= ↵g�h · P2

. Further, ug↵
is a Stark unit in the Ad0(Vg )-isotypical part of (O⇥

Hg
) ⌦ L and �pug↵ = (↵g/�g ) · ug↵ (that is coherent

with the fact that the Frobenius must act in the left hand side trivially).

The result has been proved by Darmon, Lauder and Rotger when g and h are theta series attached to
the same imaginary quadratic field K and the prime p splits in K . In that setting, P

1

and P
2

are expressed
in terms of Heegner points and ug↵ in terms of elliptic units. The assumption that p is split is crucial
for the use of both Katz’s p-adic Kronecker limit formula and also for the p-adic Gross–Zagier formula of
Bertolini, Darmon and Prasanna.

This conjecture is adapted in [6] to express it in the setting of units in number fields, where some of the
self-duality assumptions can be relaxed. In particular, the conjecture is rephrased in terms of the special
value Lp(g ⌦ h, 1), where g and h are two weight one modular forms and Lp(g ⌦ h, s) is the Hida–Rankin
p-adic L-function attached to the convolution of two modular forms. This value is expected to encode
information about units and p-units in the field cut out by the Galois representation attached to g ⌦ h.
In [12], this conjecture is proved when g and h are self-dual, and there is a further study of the question
via the Euler system of Beilinson–Flach elements constructed in [2, 3, 10]. The setting of points in elliptic
curves is treated in [8] using the families of cohomology classes of [9].

19Reports@SCM 4 (2018), 9–20; DOI:10.2436/20.2002.02.15.



BSD: old and new

As a way of finishing this survey about the conjecture of Birch and Swinnerton-Dyer, we would like
to emphasize the idea that mathematicians have not still envisaged a successful approach to the problem
useful for its general proof, but many interesting ideas not only for this area but for many others have
emerged in the last years. In particular, those ideas concerning Euler systems and p-adic methods have
been successfully applied to many other instances, such as the study of the Iwasawa main conjecture for
elliptic curves.
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Lefschetz properties

1. Introduction

The weak and strong Lefschetz properties on graded Artinian algebras have been an object of study along the
last few decades. We say that a graded Artinian algebra A =

L
i

A
i

has the strong Lefschetz property (SLP)
if the multiplication by a dth power of a general linear form has maximal rank (i.e., ⇥Ld : A

i

! A
i+d

is
either injective or surjective for every i). In particular, we say that A has the weak Lefschetz property (WLP)
if the same occurs for d = 1. These properties have connections among di↵erent areas such as algebraic
geometry, commutative algebra and combinatorics. Sometimes quite surprisingly, these connections give
new approaches to other problems, which are a priori are unrelated.

The study of the Lefschetz properties started in 1980 with the work Stanley [9], which reached the
following result:

Proposition 1.1. Let R = K[x0, ... , xn] be the polynomial ring in n variables, and I = (xa00 , ... , xan
n

) ⇢ R
be an Artinian monomial complete intersection. Let L 2 R1 be a general linear form. Then, for any
positive integers d and i , the homomorphism ⇥Ld : [R/I ]

i

! [R/I ]
i+d

(induced by multiplication by Ld)
has maximal rank.

Afterwards, Watanabe [12] continued this research connecting the Lefschetz properties to the Sperner
theory in combinatorics. Later more connections between the Lefschetz properties and vector bundles, line
arrangements on the plane or the Fröberg conjecture have been discovered (see, for instance, [6, 7]). In
this note, however, we will focus on another connection based on the so-called Togliatti systems.

In Mezzetti–Miró-Roig–Ottaviani [3], the authors related the failure of the weak Lefschetz property
of Artinian ideals to the existence of projective varieties satisfying at least one Laplace equation. This
connection (see Proposition 2.10) between a pure algebraic notion and a di↵erential geometry concept
gives rise to Togliatti systems (see Definition 2.12), an important family of Artinian ideals generated by
homogeneous forms of the same degree d failing the WLP in degree d � 1.

Let K be an algebraically closed field of characteristic 0 and R = K[x0, ... , xn]. Given an ideal I ⇢ R
generated by homogeneous forms of the same degree d , there is no di↵erence between [R/I ]

i

and R
i

whenever i  d � 1. Therefore, the lowest possible degree in which R/I can fail the WLP is d � 1. Thus,
Togliatti systems are precisely Artinian ideals I failing the WLP in the very first possible degree: from d�1
to d . Equivalently in [3, Thm. 3.2] it was proved that Togliatti systems give rise to projections of the
Veronese variety V (n, d) satisfying at least one Laplace equation of order d � 1.

After reviewing this connection, the rest of this note is devoted to study the classification of minimal
(smooth) monomial Togliatti systems (see 2.12) and present some recent results found in [8]. The complete
classification of Togliatti systems is still an open problem. However, if we restrict our attention to monomial
Togliatti systems a lot of combinatorial tools emerge and the picture becomes clearer (see, for instance,
[2, 3]). In [4] the complete classification of minimal smooth monomial Togliatti systems of quadrics and
cubics, was given. This classification uses graph theory and other combinatoric tools in its proof, and
cannot be easily generalized to classify all minimal smooth monomial Togliatti systems of degree d � 4.
In order to overcome this di�culty and address the classification problem for an arbitrary degree d � 4,
a new strategy was proposed in [2]. First of all, upper and lower bounds on the number of generators
µ(I ) of a minimal monomial Togliatti system are given. Namely, if I is a minimal Togliatti system in R
generated by monomials of degree d � 4, then 2n+1  µ(I ) 

�
n+d�1

n

�
where n � 2 and d � 4. A second

step consists of classifying all smooth monomial Togliatti systems reaching this lower bound or close to
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it; see Remark 3.3. In [2], a complete classification of all minimal smooth Togliatti systems generated by
2n+1  µ(I )  2n+2 monomials, was achieved. In particular, it was shown that, except a few cases when
n = 2, these Togliatti systems have a very peculiar shape. However, this shape is not directly generalizable
to Togliatti systems with µ(I ) � 2n+3. Actually, even when µ(I ) = 2n+3 very di↵erent situations occur.
For instance, there is no smooth minimal Togliatti system generated by 2n+3 monomials of degree d � 4
whenever n � 3; see Proposition 3.4. Therefore we focus the study on minimal Togliatti systems in three
variables generated by 7 monomials of degree d � 4. In [8] a complete classification of all the minimal
Togliatti systems in K[x , y , z ] generated by 7 monomials (see Theorem 3.7) was given. As a corollary,
a complete classification of smooth minimal Togliatti systems in R generated by 2n + 3 monomials was
achieved. Section 3 is devoted to present and motivate these two recent results.

2. Preliminaries

This section is devoted to recall all the definitions related to the Lefschetz properties and Laplace equations,
and a review of the connection between those two notions and the definition of Togliatti systems.

Definition 2.1. Let I ⇢ R be an Artinian ideal and let us consider A = R/I with the standard graduation
A =

L
r

i=0 Ai

. Let L 2 R1 be a general linear form. Then:

(i) A has the strong Lefschetz property (SLP) if, for all positive integer d and for all 1  i  r � d , the
homomorphism ⇥Ld : [A]

i

! [A]
i+d

has maximal rank;

(ii) A has the weak Lefschetz property (WLP) if, for all 1  i  r � 1, the homomorphism ⇥L : [A]
i

!

[A]
i+1 has maximal rank.

Remark 2.2. It is clear that having the SLP implies having the WLP, however, the converse is not true.
For instance, it can be proved that I = (x20 , x

3
1 , x

5
2 , x0x1, x0x

2
2 , x1x

3
2 , x

2
1x

2
2 ) has the WLP but fails the SLP

in degrees 2 and 1, and also that I = (x30 , x
3
1 , x

3
2 , (x0+ x1+ x2)3) has the WLP but fails the SLP in degrees

3 and 1.

In this note we will focus on the failure of the weak Lefschetz property for Artinian ideals. Let us first
see some examples:

Example 2.3. (i) I = (x3, y3, z3, xyz) fails the WLP in degree 2.

(ii) I = (x4, y4, z4, t4, xyzt) fails the WLP in degree 5.

(iii) By [5, Thm. 4.3], the ideals I = (xn+1
0 , ... , xn+1

n

, x0 ... , xn) fail the WLP in degree
�
n+1
2

�
� 1.

Remark 2.4. Notice that the first ideal fails the WLP in the first non trivial place while the others fail later.
This particularity will be studied in the sequel in more detail.

Even though an Artinian ideal I is expected to have the WLP, establishing this property for a concrete
family of Artinian ideals can be a hard problem. For instance, Stanley [9] and Watanabe [12] proved that
a general Artinian complete intersection has the WLP. However, to see wether every Artinian complete
intersection with codimension � 4 has the WLP remains an open problem.

In the last decades there have been established multiple connections between Lefschetz properties and
other areas of mathematics, such as combinatorics, representation theory or geometry; see, for instance,
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[3, 9, 12]. In particular, Mezzetti–Miró-Roig–Ottaviani [3] connected the failure of the WLP with rational
varieties satisfying Laplace equations. Let us recall some di↵erential geometry definitions.

Definition 2.5. Let X ⇢ PN be a rational variety of dimension n with parametrization  : Pn 99K X , (t0 :
... : t

n

) 7! (F0(t0, ... , tn) : ... : F
N

(t0, ... , tn)). We call s-th osculating vector space on x =  (t0 : ... : t
n

)
the vector space

T
(s)
x

X :=

*
@s 

@k0
t0
... @k

n

t

n

(t0 : ... : tn)|k0 + · · ·+ k
n

= s

+
.

Finally, we call s-th osculating projective space on x 2 X the projectivization of the vector space above:

T(s)
x

X := P
⇣
T

(s)
x

X
⌘
.

Remark 2.6. There are
�
n+s

s

�
� 1 vectors (k0, ... , kn) satisfying k0 + · · ·+ k

n

= s. Then, in a general point

x 2 X , the expected dimension of T (s)
x

X is
�
n+s

s

�
�1. However, if there are linear dependencies among the

partial derivatives of order s, this bound is not reached. In this case,  satisfies a linear partial di↵erential
equation of order s. This motivates the following definition.

Definition 2.7. Let X ⇢ PN be a rational projective variety of dimension n. We say that X satisfy �
Laplace equations of order s if

(i) for all smooth point x 2 X we have dimT
(s)
x

X <
�
n+s

s

�
� 1, and

(ii) for general x 2 X , dimT
(s)
x

X =
�
n+s

s

�
� 1� �.

Remark 2.8. If N <
�
n+s

s

�
� 1, then T

(s)
x

X is spanned by more vectors than the ambiance space. So, X
trivially satisfies at least one Laplace equation of order s.

Let us now restrict our attention to Artinian ideals generated by homogeneous forms of the same degree
d . To these ideals we can associate two di↵erent rational varieties:

Definition 2.9. Let I = (F1, ... ,Fr ) ⇢ R be an Artinian ideal generated by r forms of degree d . Let
I�1 be the ideal generated by the inverse Macaulay system of I ; see, for instance, [3, § 3]. Consider

�[I�1]
d

: Pn 99K P(
n+d

d

)�r�1 to be the rational map associated to [I�1]
d

and �
I

d

: Pn

! Pr�1 to be the

morphism (I is Artinian) associated to I
d

. We define X
n,[I�1]

d

:= Im(�[I�1]
d

), which is the projection of the
d-th Veronese variety V (n, d) from hF1, ... ,Fr i, and X

n,I
d

:= Im(�
I

d

), which is the projection of V (n, d)
from h[I�1]

d

i.

Finally, we can establish the following important relation.

Proposition 2.10 (Mezzetti–Miró-Roig–Ottaviani, [3, Thm. 3.2]). Let I ⇢ R be an Artinian ideal generated
by r forms F1, ... ,Fr of degree d. If r 

�
n+d�1
n�1

�
, then the following conditions are equivalent:

(a) the ideal I fails the WLP in degree d � 1;

(b) the forms F1, ... ,Fr become k�linearly dependent on a general hyperplane H ⇢ Pn; and

(c) the n dimensional variety X
n,[I�1]

d

satisfies at least one Laplace equation of order d � 1.
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Remark 2.11. (i) The bound on the number of generators ensures the possible failure of the WLP is
due to injectivity.

(ii) For 1  i  d �2, since [R/I ]
i

⇠= R
i

, the homomorphism ⇥L : [R/I ]
i

! [R/I ]
i+1 is injective. Hence,

the first possible degree where ⇥L can fail to have maximum rank is precisely d � 1.

This result motivates the following definitions.

Definition 2.12. Let I = (F1, ... ,Fr ) ⇢ R be an Artinian ideal generated by r 

�
n+d�1
n�1

�
forms of

degree d . We say that I is a Togliatti system if it satisfies any of the three equivalent conditions from
Proposition 2.10. Moreover, we say that

(i) I is a minimal Togliatti system if for any 1  s  r and {F
i1 , ... ,Fis} ⇢ {F1, ... ,Fr}, I 0 = (F

i1 , ... ,Fis )
is not a Togliatti system;

(ii) I is a monomial Togliatti system if I can be generated by monomials;

(iii) I is a smooth Togliatti system if X
n,[I�1]

d

is a smooth variety.

Remark 2.13. (i) The name was given in honor to E. Togliatti who proved that the only smooth Togliatti
system of cubics is I = (x30 , x

3
1 , x

3
2 , x0x1x2); see, for instance, [10, 11].

(ii) To address the classification of Togliatti systems it is crucial to investigate when they are minimal.
In the next section we will focus on the minimality of a Togliatti system.

(iii) If I is generated by r monomials of degree d , then I�1 is generated by all the
�
n+d

d

�
� r monomials

of degree d which do not generate I . In particular, X
n,I and X

n,[I�1]
d

are two closely related toric
varieties. These varieties carry a lot of combinatorial properties which ease their study as can be seen
in [2, 3, 4, 8]. Henceforward, we will restrict our attention to (smooth) monomial Togliatti systems.

This preliminary section ends with a result that shows why dealing with monomial ideals simplifies the
study of Lefschetz properties.

Proposition 2.14 (Migliore–Miró-Roig–Nagel, [5, Prop. 2.2]). Let I ⇢ R be an Artinian monomial ideal.
Then R/I has the WLP if and only if x0 + · · ·+ x

n

is a Lefschetz element for R/I .

Therefore, to check the WLP for monomial Artinian ideals there is no need to study the multiplication
by a general linear form L, but only for the particular form L = x0 + · · ·+ x

n

.

3. Classification of monomial Togliatti systems

In this section we will address the problem of classifying (smooth) monomial Togliatti systems. We will
start by taking account of all the most recent results achieved, all of them, in the present decade. Finally
we will establish two new results that enlarge the classification of (smooth) monomial Togliatti systems.
Furthermore, these new results provide a huge amount of new examples of monomial Togliatti systems
which are non trivial in the sense of Proposition 3.2.

In Micha lek–Miró-Roig [4], the authors completely classified all smooth monomial Togliatti systems
of quadrics and cubics using graph theory. However, the classification problem of (smooth) monomial
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Togliatti systems generated by forms of degree d � 4 becomes much more involved and, up to now, a
complete classification seems out of reach. Therefore, Mezzetti and Miró-Roig changed the strategy in [2]
and focused on studying the number of generators of a (smooth) monomial Togliatti system. Moreover,
they gave upper and lower bounds of this number of generators, and classified all the smooth monomial
Togliatti systems near the lower bound. Before stating the main results of this note, let us fix some notation
and review some motivational results from [2].

Definition 3.1. For every n, d 2 N, we denote by T (n, d) the set of all minimal monomial Togliatti
systems, and by T s(n, d) the set of all minimal smooth monomial Togliatti systems. Furthermore, we write

(i) µ(n, d) = min{µ(I )|I 2 T (n, d)},

(ii) µs(n, d) = min{µ(I )|I 2 T

s(n, d)},

where µ(I ) stands for the minimal number of generators of an ideal I ⇢ K[x0, ... , xn].

With this notation, we start establishing lower bounds for the quantities µ(n, d) and µs(n, d). The first
result in this direction gives rise to a very important family of Togliatti systems:

Proposition 3.2. Let n, d 2 N and let m be a monomial of degree d � 1. Then, the ideal (xd0 , ... , x
d

n

) +
m(x0, ... , xn) is a minimal monomial Togliatti system. These minimal monomial Togliatti systems are called
trivial Togliatti systems.

Proof. By Propositions 2.14 and 2.10, it is enough to restrict the generators of I to the hyperplane
x0 + ... + x

n

, and see that they become linearly dependent; see, for instance, [2, Rem. 3.8].

Remark 3.3. (i) Let I be trivial Togliatti system given by a monomial m = xa00 · · · xan
n

of degree d � 1.
Then, the n dimensional variety X

n,[I�1]
d

parametrized by  = �[I�1]
d

(see Definition 2.9) satisfies a

very simple Laplace equation: @d�1/@a0
· · · @a

n = 0.

(ii) Observe that a trivial Togliatti system I satisfies that 2n+1  µ(I )  2n+2. In fact, Mezzetti and
Miró-Roig showed in [2] that for n � 2 and d � 4, µ(n, d) = µs(n, d) = 2n + 1. Furthermore, they
proved that, for d � 4, all minimal monomial smooth Togliatti systems of forms of degree d with
2n + 1  µ(I )  2n + 2 are trivial.

(iii) Of course, for minimal monomial Togliatti systems I with µ(I ) � 2n + 3 we cannot expect them to
be trivial. In particular, its study gives rise to geometrically more interesting examples.

The remaining of this section is devoted to study the classification of (smooth) monomial Togliatti
systems generated by 2n+ 3 forms of degree d . Let us start the discussion by stating the following result:

Proposition 3.4 (Mezzetti–Miró-Roig, [2, Prop. 4.4]). Let n � 3 and d � 4. Then, there is no I 2 T

s(n, d)
with µ(I ) = 2n + 3.

This result significantly reduces the task of classifying all minimal smooth monomial Togliatti systems
I generated by 2n + 3 forms of degree d � 4. Namely, it will be enough to consider the three variables
case. Moreover, the hypothesis of Proposition 2.10 implies that a Togliatti system in K[x , y , z ] generated
by 7 forms of degree d must satisfy that 7 

�2+d�1
2�1

�
= d + 1.

In other words, our goal now is shifted to classify all minimal smooth monomial Togliatti systems in
K[x , y , z ] generated by forms of degree d � 6. To establish this classification we need to fix some notation.
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Definition 3.5. Let us denote the ideal T = (x3, y3, z3, xyz) and the following sets of monomial ideals:

A =
�
(y3, y2z , yz2, z3), (xy2, xz2, y3, z3), (x2y , y3, y2z , z3), (x2z , y3, y2z , z3), (xz2, y3, y2z , z3),

(xz2, y3, y2z , yz2), (x2z , y3, y2z , yz2), (xyz , xz2, y3, yz2), (xy2, xz2, y3, yz2), (xyz , xz2, y3, y2z),
(xy2, xz2, y2z , yz2), (x2z , xy2, y2z , yz2), (x2z , xz2, y3, y2z), (x2z , xz2, y3, yz2), (x2y , xy2, y3, z3),
(x2z , xy2, y3, z3), (x2z , xyz , y3, y2z), (x2z , xyz , y3, yz2), (x2y , xz2, y3, y2z), (x2y , xz2, y3, yz2),

(x2z , xy2, y3, yz2)
 
,

B =
�
(x3z , xy2z , y4, yz3), (x2yz , xz3, y4, y3z), (x2z2, xy2z , y4, z4), (x2yz , y4, y2z2, z4)

 
,

and
C =

�
(x3yz , xy2z2, y5, z5), (x2yz2, xy3z , y5, z5)

 
.

Finally, for any d � 1 integer, let be M(d) := {xaybzc | d � 1 � a, b, c � 0, a+ b + c = d}.

This definition gives rise to the first examples of minimal Togliatti systems generated by 7 monomials
of degree d � 6 in three variables.

Proposition 3.6. Let d � 6. Then any of the following ideals is a minimal Togliatti system:

(i) both (a) I = (xd , yd , zd) + m(x2, y2, xz , yz) and (b) I = (xd , yd , zd) + m(x2, y2, xy , z2), for every
m 2 M(d � 2);

(ii) I = (xd , yd , zd) + xd�3J, for any J 2 A;

(iii) I = (xd , yd , zd) +mT, for all m 2 M(d � 3);

(iv) I = (xd , yd , zd) + xd�4J, for every J 2 B;

(v) I = (xd , yd , zd) + xd�5J, for any J 2 C.

Proof. It is a strightforward computation to show that restricting the generators of each type of ideal to
the linear form x+y+z they become linearly dependent. Then, all of them are Togliatti systems according
to Proposition 2.10. On the other hand, none of these ideals contain a Togliatti system generated by either
5 or 6 monomials. Hence, they are minimal.

Moreover, as we will see in the next results, almost all minimal Togliatti systems in three variables
generated by 7 monomials of degree d � 6 are of one of the types mentioned in Proposition 3.6. These
results can be seen as a natural generalization of those obtained in Remark 3.3. The first result classifies
all minimal Togliatti systems in three variables generated by 7 monomials of degree d � 10.

Theorem 3.7 (Miró-Roig–Salat, [8, Thm. 3.8]). Let I ⇢ K[x , y , z ] be a minimal Togliatti system generated
by 7 monomials of degree d � 10. Then, up to a permutation of the variables, one of the following cases
hold:

(i) there is m 2 M(d�2) such that either (a) I = (xd , yd , zd)+m(x2, y2, xz , yz) or (b) I = (xd , yd , zd)+
m(x2, y2, xy , z2);

(ii) there is J 2 A such that I = (xd , yd , zd) + xd�3J;
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(iii) there is m 2 M(d � 3) such that I = (xd , yd , zd) +mT;

(iv) there is J 2 B such that I = (xd , yd , zd) + xd�4J;

(v) there is J 2 C such that I = (xd , yd , zd) + xd�5J.

From this result, and using combinatorial properties of toric varieties, a complete classification of smooth
minimal Togliatti systems in n+1 variables generated by 2n+3 monomials of degree d � 10 can be given.

Set M0(d) = {xa0x
b

1 x
c

2 | a + b + c = d and a, b, c � 1} for any integer d � 3. Then we can establish
the following theorem regarding smooth Togliatti systems.

Theorem 3.8 (Miró-Roig–Salat, [8, Thm. 3.9]). Let I ⇢ K[x0, ... , xn] be a smooth minimal monomial
Togliatti system of forms of degree d � 10. Assume that µ(I ) = 2n + 3. Then n = 2 and, up to
permutation of the coordinates, one of the following cases holds:

(i) I = (xd0 , x
d

1 , x
d

2 ) +m(x20 , x
2
1 , x0x2, x1x2) with m 2 M0(d � 2);

(ii) I = (xd0 , x
d

1 , x
d

2 ) +m(x20 , x
2
1 , x0x1, x

2
2 ) with m 2 M0(d � 2);

(iii) I = (xd0 , x
d

1 , x
d

2 ) +m(x30 , x
3
1 , x

3
2 , x0x1, x2) with m 2 M0(d � 3).

Remark 3.9. For 6  d  9 there are other examples of minimal monomial Togliatti systems I =
(xd , yd , zd) + J ⇢ K[x , y , z ], generated by 7 monomials, which are not covered by Theorem 3.7. Using
Macaulay2 software [1], we computed all of these additional ideals J, up to permutation of the variables:
for d = 6,

(x5y , x3z3, x2y3z , y5z), (x5z , x3y3, x2y2z2, y5z), (x3z3, x2y4, x2y2z2, y5z), (x5z , x3y3, xyz4, y5z),
(x4z2, x3y3, x2y2z2, y4z2), (x3z3, x2y4, x2y2z2, y4z2), (x4z2, x3y3, xyz4, y4z2), (x3y3, x3z3, x2y2z2, y3z3),

xy(x4, x2y2, xyz2, y4), xy(x3z , x2y2, xyz2, y3z), xy(x2y2, x2z2, xyz2, y2z2), xy(x2y2, x2z2, xz3, y2z2),
xy(x4, xz3, y4, y2z2), xy(x4, x2y2, y4, z4), xy(x4, xyz2, y4, z4), xy(x3z , x2y2, y3z , z4),

xz(x3z , x2z2, xyz2, y4), xz(x2yz , x2z2, xyz2, y4), xz(x3z , xy2z , xyz2, y4), xz(x3z , x2yz , xz3, y4),
xz(x3z , x2z2, xz3, y4), xz(x3z , xy2z , xz3, y4), xz(x2y2, x2z2, xy3, y3z), xz(x2y2, x2z2, xy2z , y3z),
xz(x2z2, xy3, xy2z , y3z), xz(x2y2, x2z2, xy3, y4), xz(x2y2, x2z2, y4, y3z), xz(x2y2, x2z2, y4, y2z2),
xz(x3z , x2yz , xy2z , y4), xz(x3z , x2yz , xyz2, y4), x(xy4, xyz3, xz4, y3z2), x(x4z , x2y3, xy2z2, y5),
x(x4z , xyz3, y5, y3z2), x(x2z3, xy4, xy2z2, y5), x(x4z , x2yz2, y5, y2z3), x(x2z3, xy4, xyz3, y3z2),
x(x4z , x2z3, xy3z , y5), x(x4z , x2y3, y5, yz4), x(x3z2, x2y3, xz4, y3z2), x(x4z , xy2z2, y5, yz4),
x(x2z3, xy4, xz4, y3z2), x(x2y3, x2z3, y4z , yz4), x(x4y , x2z3, xy3z , y5), x(x2yz2, xy3z , y5, z5);

for d = 7,

xy(x2z3, xy4, xy2z2, y5), xy(x5, x2y2z , xyz3, y5), xy(x4y , x3y2, xz4, y3z2), xy(x3y2, x2y3, x2z3, y2z3),
xy(x5, x2y2z , y5, z5), xy(x4z , xy4, y5, z5), xy(x5, xyz3, y5, z5), xz(x3z2, x2z3, xy3z , y5),

xz(x4z , x2yz2, xz4, y5), xz(x4z , xy3z , xz4, y5), x(x5z , x2y3z , xy2z3, y6), x(xy5, xy2z3, xz5, y4z2),
x(x5z , x4y2, x2y2z2, y3z3), x(x4y2, x4z2, x2y2z2, y3z3), x(x3y3, x3z3, x2y2z2, y3z3),

x(x4yz , x2y4, x2z4, y3z3), x(x2y4, x2y2z2, x2z4, y3z3), x(x4yz , xy5, xz5, y3z3), x(x2y2z2, xy5, xz5, y3z3),
x(x5z , x2y3z , y6, yz5), x(x5z , xy2z3, y6, yz5), x(x5z , x4y2, y5z , yz5), x(x4y2, x4z2, y5z , yz5),
x(x3y3, x3z3, y5z , yz5), x(x4yz , x2y2z2, y6, z6), x(x4yz , y6, y3z3, z6), x(x2y2z2, y6, y3z3, z6),

xyz(x2y2, x2z2, xy3, y4), xyz(x3z , x2yz , xy2z , y4), xyz(x4, x2y2, xyz2, y4), xyz(x3z , x2yz , xyz2, y4),
xyz(x3z , x2z2, xyz2, y4), xyz(x2yz , x2z2, xyz2, y4), xyz(x3z , xy2z , xyz2, y4), xyz(x3z , x2yz , xz3, y4),

http://reportsascm.iec.cat28

http://reportsascm.iec.cat


Mart́ı Salat Moltó

xyz(x3z , x2z2, xz3, y4), xyz(x3y , xy3, xz3, y4), xyz(x3z , xy2z , xz3, y4), xyz(x2y2, x2z2, xy3, y3z),
xyz(x2y2, x2z2, xy2z , y3z), xyz(x2z2, xy3, xy2z , y3z), xyz(x3z , x2y2, xyz2, y3z), xyz(x3y , x2z2, xyz2, y3z),

xyz(x2y2, x2z2, y4, y3z), xyz(x4, xy3, xz3, y2z2), xyz(x4, xz3, y4, yz3);

for d = 8,
xy(x4z2, x3y3, xyz4, y4z2), xz(x3z3, x2y2z2, xy4z , y6);

and for d = 9,

xyz(x3z3, x2y2z2, xy4z , y6), xyz(x3y3, x3z3, x2y2z2, y3z3), xyz(x6, x2y2z2, y6, z6).

This remark added to Proposition 3.7 completes the classification problem, for any degree d � 6, of
all minimal monomial Togliatti systems in three variables with 7 generators.
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1. Introduction

Models of fracture in brittle materials can be based on discontinuous and continuous descriptions of cracks.

Discontinuous models describe cracks as sharp entities by means of discontinuous displacement fields.
The main disadvantage of these models is the lack of a rigorous strategy to determine initiation and
propagation of cracks. Numerically, they are usually tackled by the eXtended Finite Element Method (X-
FEM), which enables to solve the problem with meshes unfitted to the crack geometry [2, 14]. However,
dealing with discontinuities in a X-FEM setting may be cumbersome in cases with complex patterns [18].

Alternatively, phase-field models for fracture represent cracks as damaged regions that have lost their
load-carrying capacity, with continuous displacement fields in all the domain [3]. These models introduce
an auxiliar field d , called the phase-field variable or damage field, which di↵erentiates between the broken
and unbroken states of the material and varies smoothly between them. The evolution of the phase-field
variable as a result of the loading conditions handles naturally the initiation, propagation, branching and
coalescence of cracks. Incorporating the crack evolution into the equations is the main advantage of
phase-field models over the discontinuous ones.

The phase-field approach introduces a regularization length parameter `, which comes from the smeared
representation of the crack and can be related to its width. Since the goal is to approximate a sharp crack,
the parameter ` is to be chosen small and the phase-field variable d will vary sharply in the damaged zone.
Therefore, high spatial resolution is a key requirement to approximate properly the solution. The usual
strategy is to refine the computational mesh locally where the crack is expected to propagate: a priori in
the cases in which the crack path is known and by remeshing as the phase-field value evolves when it is not.
Obviously, this implies a high computational cost. A reasonable approach to reduce the cost is defining
an adaptive refinement method. The di↵erent strategies proposed in the literature o↵er an alternative to
remeshing, though they are non-trivial; see [15] and the references therein. We refer to [1, 20] for an
exhaustive review of existing phase-field models and the numerical challenges they present.

In this work, we use the Hybridizable Discontinuous Galerkin method (HDG) as an alternative to
standard FEM to solve the phase-field equations. HDG was first proposed in [5] for second order elliptic
problems and, due to its promising properties, has already been formulated for multiple problems, see for
example [10, 16, 17].

As any other Discontinuous Galerkin (DG) method, HDG is based on the use of element-by-element
discontinuous basis functions in a finite element setting. Continuity of the solution is imposed in weak form
by means of numerical fluxes on element boundaries. DG methods are appealing to solve the equations
of the phase-field model because of the possiblity of using di↵erent approximation bases in neighbouring
elements, which will enable the straightforward definition of an adaptive refinement strategy. Among all
DG methods, we choose HDG because it involves less degrees of freedom, with a computational e�ciency
close to standard continuous FE and better convergence properties [11, 21].

In Section 2 we provide a brief overview of the chosen phase-field model for brittle fracture and the
staggered scheme to solve it. In Section 3, we present the HDG formulation of the equations. Finally, in
Section 4, we compare the results obtained with the HDG formulation with the ones obtained with standard
FEM for a benchmark problem, for both low and high-order degrees of approximation. All computations
have been done with Matlab.
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a) b

Figure 1: (a) Body with a sharp crack �C . (b) Smeared crack representation.

2. Phase-field modelling of brittle fracture

In this work, we consider the quasi-static phase-field model for fracture proposed by Bourdin–Francfort–
Marigo in [3].

In [6], Francfort and Marigo state that the fracture process acts to minimize the total energy of a body,
which can be expressed as the sum of its bulk elastic energy and the crack surface energy, that is

E (u, �C ) =

Z

⌦
 0(") dV + Gc

Z

�C

ds, (1)

with  0 the elastic energy density in the domain ⌦ and GC the critical energy release rate for a crack
�C ; see Fig. 1(a). We restrict ourselves to the case of linear elastic isotropic materials, for which the
elastic energy density is given by  0(") = (" : C : ") /2, where " is the standard infinitesimal strain tensor,
defined from the displacement u as "(u) =

�
ru+ (ru)T

�
/2, and C is the fourth-order elasticity tensor

depending on the Lamé parameters. The symbol : denotes the double contraction operator, that is, for
instance, (C : ")ij =

P
k,l Cijkl"kl .

To enable a numerical treatment of (1), Bourdin–Francfort–Marigo [3] introduced a regularized formu-
lation by considering a smeared representation of the sharp crack �C ; see Fig. 1(b). The crack is defined by
a new field d(x, t) which varies smoothly between two values representing the unbroken and broken states
of the material, 0 and 1 respectively, and is therefore called the phase-field or damage parameter. The
energy functional (1) is then approximated by

E`(u, d) =

Z

⌦

�
(1� d)2 + ⌘

�
 0(") dV + Gc

Z

⌦

✓
d2

2`
+

`

2
|rd |2

◆
dV , (2)

where ` regulates the width of the di↵use crack and ⌘ is a small dimensionless parameter to avoid a
complete loss of sti↵ness in broken regions. It has been proved in Bourdin–Francfort–Marigo [4] that with
` ! 0, the regularized functional (2) �-converges to (1). This implies that the set {d = 1} tends to the
sharp crack �C as the width of the smeared representation tends to 0.

Minimizing the energy functional (2) we obtain the system
8
<

:

r · � = 0,

� `2�d + d =
2`

Gc
(1� d) 0,

(3)
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with the stress tensor � defined as

�(u, d) =
�
(1� d)2 + ⌘

� @ 0(")

@"
= ((1� d)2 + ⌘) C : "(u). (4)

The resulting system of governing equations is to be solved using an incremental procedure for the loading
process. Assuming the solution at load step n is known, in equilibrium with prescribed values tn and unD ,
the system is solved for the load step n + 1 using the corresponding boundary conditions

8
><

>:

� · n = tn+1 on �N ,

u = un+1
D on �D ,

rd · n = 0 on @⌦,

(5)

where tn+1 are prescribed tractions on �N , u
n+1
D are prescribed displacements on �D , with �D [ �N = @⌦

and �D \ �N = ;, and n stands for the outward unit normal vector.

Following Miehe–Hofacker–Welschinger in [12, 13], we replace  0 in the second equation in (3) by
a history field variable H defined as Hn+1(x) = max⌧2[1,n+1] 

⌧
0 , to enforce irreversibility of the crack

evolution.

2.1 Staggered approach

The total energy (2) is convex with respect to u and d separately, but not with respect to both of them.
This motivates the solution of the system by means of a staggered scheme: at each load step, we compute
the displacement field u and the damage field d alternately until convergence. Given the solution (un, dn)
at load step n, the solution at load step n + 1 is computed by iterating over i in the following scheme:

(i) Compute
⇥
un+1

⇤i+1
by solving the equation

r · �
⇣⇥

un+1
⇤i+1

,
⇥
dn+1

⇤i⌘
= 0 in ⌦, (6)

with � given by (4) and boundary conditions � · n = tn+1 on �N ,
⇥
un+1

⇤i+1
= un+1

D on �D .

(ii) Update the history field
⇥Hn+1

⇤i+1
= max

⇣
Hn,

⇥
 n+1

0

⇤i+1
⌘
.

(iii) Compute
⇥
dn+1

⇤i+1
by solving

�`2�
⇥
dn+1

⇤i+1
+
⇥
dn+1

⇤i+1
=

2`

Gc

⇣
1� ⇥

dn+1
⇤i+1

⌘ ⇥Hn+1
⇤i+1

in ⌦, (7)

with boundary condition
⇣
r ⇥

dn+1
⇤i+1

⌘
· n = 0 on @⌦.

We take (u0, d0)(x) = (0, 0) for all x in ⌦ and
⇥
dn+1

⇤0
= dn for n > 0. We keep iterating over i until

some stopping criterion indicating convergence is satisfied. An alternative is to take su�ciently small load
increments and use the staggered approach without iterating, see for example [1, 8], but the speed of
propagation of the crack might be underestimated. Here, we iterate until the relative Euclidean norm of
the di↵erence of two consecutive iterates is smaller than a fixed tolerance, for both the displacement and
damage fields.
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Remark 2.1 (E�ciency). The staggered algorithm is simple and has been proved to be robust [12], but
many iterations are needed to reach convergence even for simple benchmark problems. A monolithic
scheme computing simultaneously both fields would be more e�cient, but then one has to deal with the
non-convexity of the functional (2) and the Jacobian matrix of the system being indefinite [9, 19].

3. HDG formulation

We aim to use HDG to solve the governing equations of the phase-field model. The adopted staggered
approach enables an independent numerical treatment for each of the equations, so we can focus on the
HDG formulations for the linear elasticity equilibrium equation (6) and the damage field equation (7). For
the former equation, there are various options in the literature. Here, we consider the HDG formulation for
linear elasticity by Fu–Cockburn–Stolarski [7] and Soon–Cockburn–Stolarski [17]. For the latter, we add
the reaction term to the standard HDG formulation for di↵usion by Cockburn–Gopalakrishnan–Lazarov [5].
Both formulations are recalled in this section.

Throughout the section, we assume the domain ⌦ covered by a finite element mesh with nel disjoint
elements Ki satisfying ⌦̄ ⇢ Snel

i=1 K̄i , Ki \ Kj = ;, for i 6= j , and denote the union of the nfc faces �f of
the mesh as � =

Snel
i=1 @Ki =

Snfc
f=1 �f .

3.1 HDG for the equilibrium equation

Let us consider the linear elasticity problem defined in (6), to be solved for a frozen damaged field d . The
problem can be written in the broken space of elements as a set of local element-by-element equations
and some global equations. Local problems impose the linear elasticity equation at each element Ki with
Dirichlet boundary conditions, namely

8
><

>:

r · �(J, d) = 0 in Ki ,

J�ru = 0 in Ki ,

u = û on @Ki ,

(8)

for i = 1 ... nel. The variable J is introduced to split the problem into a system of first order PDE and û is
a new trace variable defined on the skeleton of the mesh, �, which is single-valued; see Fig. 2. Note that,
given û, the local problems (8) can be solved to determine u and J at each element.

The global problem is stated to determine the trace variable û. It imposes equilibrium of tractions on
faces and also the boundary conditions, that is,

8
><

>:

J� · nK = 0 in � \ @⌦,
� · n = tN on �N ,

û = uD on �D ,

(9)

where J·K denotes the jump operator defined at a face �f as J�K = �Lf + �Rf , where Lf and Rf denote
the left and right elements sharing the face and �i denotes the value of � from element Ki . Note that
the continuity of u across � is satisfied due to the boundary condition u = û in the local problems and the
fact that û is single-valued.
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Figure 2: Left: HDG discretization of the domain with the mesh skeleton �. Right: detail of the HDG discretization
for the local problem in one element.

The HDG formulation of the problem is obtained by the discretization of the local and global equations.
To approximate the elemental variables, u and J, and the trace variable, û, the discrete spaces considered
are

Vh(⌦) = {v 2 L2(⌦) : v |Ki 2 Pp(Ki ) for i = 1 ... nel},
⇤h(�) = {v̂ 2 L2(�) : v̂ |�f 2 Pp(�f ) for f = 1 ... nfc},

where Pp denotes the space of polynomials of degree less or equal to p. To simplify the notation, we use
u, J, û to denote both the solutions and their approximations.

For an element Ki , the weak form for the local problem (8) is: given û 2 [⇤h(�)]n, find u 2 [Vh(Ki )]n,
J 2 [Vh(Ki )]n⇥n such that

Z

Ki

v · (r · �) dV +

Z

@Ki

v · ((C : ⌧ (û� u)⌦ n) · n) ds = 0,

Z

Ki

Q : J dV +

Z

Ki

(r ·Q) · u dV �
Z

@Ki

(Q · n) · û ds = 0,
(10)

for all v 2 [Vh(Ki )]n, for all Q 2 [Vh(Ki )]n⇥n. The first equation in (10) is obtained from the first equation
in (8) by applying integration by parts, replacing the numerical flux �̂ := � + C : (⌧(û� u)⌦ n) on the
boundary and undoing the integration by parts. ⌧ is a nonnegative stabilization parameter, which here is
taken as a positive constant on all faces.

The discretization of the local problem (10) leads to the so-called local solver for each element Ki ,
which expresses u and J in terms of û, namely

ue = UKi⇤i , Je = QKi⇤i , (11)

with matrices UKi ,QKi . ⇤i is a vector containing the unknown nodal values of û for all the faces of Ki ,

this is, ⇤i :=
⇥
ûFi ,1,T , ... , ûFi ,m,T

⇤T
.

For the global problem (9), the weak form is stated replacing � by the numerical flux �̂. The weak
form is: find û 2 [⇤h(�)]n such that û = P2 (uD) on �D and

Z

�
v̂ · J�̂ · nK ds +

Z

�N

v̂ · (�̂ · n) ds =

Z

�N

v̂ · tN ds, (12)
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for all v̂ 2 [⇤h(�)]n such that v̂ = 0 on �D . The function P2 is the L2 projection onto the discrete space on
�D . Discretizing the global weak form and replacing u and J in terms of û by the local solver (11), we get
a system for û. Once û is determined, using the local solvers (11), we compute u and J in every element.

For this formulation, u converges with order p + 1 in L2 norm and J with order p + 1/2; see Fu–
Cockburn–Stolarski [7].

3.2 HDG for the damage field equation

The HDG formulation for the damage field equation (7) is obtained analogously to the formulation for linear
elasticity. Introducing a new variable q to be the gradient of d , the local problems impose the equation
in every element Ki with Dirichlet boundary conditions, and their weak form reads: given d̂ 2 ⇤h(�), find
d 2 Vh(Ki ), q 2 [Vh(Ki )]n such that

�
Z

Ki

GC ` v ·r · q dV �
Z

@Ki

GC `⌧ (d̂ � d)v ds +

Z

Ki

✓
GC

`
+ 2H

◆
vd dV =

Z

Ki

v2H,

Z

Ki

w · q dV +

Z

Ki

(r ·w)d dV �
Z

@Ki

w · n d̂ ds = 0,

for all v 2 Vh(Ki ), for all w 2 [Vh(Ki )]n. The numerical flux prescribed on the boundary of every element
is q̂ := q+ ⌧(d̂ � d)n, with ⌧ the stabilization parameter.

The weak form of the global problem is: find d̂ 2 ⇤h(�) such that
R
�\@⌦ v̂ · Jq̂ · nK ds = 0, for

all v̂ 2 ⇤h(�). In this case, both d and q are proved to converge with order p + 1 in L2 norm; see
Cockburn–Gopalakrishnan–Lazarov [5].

Remark 3.1 (H is evaluated at integration points). To solve the damage field equation we need the value
of H at integration points. From the staggered scheme, H can be computed using the nodal values of J
obtained by solving the equilibrium equation. Evaluating H at nodes may result in negative values when
it is interpolated to integration points if we use approximation functions of degree greater than 1, even
though it is a nonnegative function by definition. This leads to unphysical solutions. Also, it may cause
the non-convergence of the staggered scheme if consecutive iterates alternate negative and positive values
at some points. We will illustrate this behavior with a numerical example in next section. To avoid non-
physical negative values J is interpolated to integration points and then these values are directly used to
evaluate H.

4. Numerical example: L-shaped panel test

One of the typical benchmark problems in computational fracture is the L-shaped panel test. Consider
the specimen in Fig. 3(left), which is fixed on the bottom and has imposed vertical displacement at a 30
mm distance to the right edge. Following Ambati–Gerasimov–De-Lorenzis [1], the material parameters
are � = 6.16 kN/mm2, µ = 10.95 kN/mm2 and Gc = 8.9 · 10�5 kN/mm2. The regularization length in
the phase-field model is taken to be ` = 3 mm and the residual sti↵ness is ⌘ = 10�5. The stabilization
parameter appearing in the HDG formulation of the equations is taken ⌧ = 1 for both the equilibrium and
the damage field equations.
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Figure 3: Left: geometry and boundary conditions of the test. Right: computational mesh.

We consider a triangular mesh with 1842 elements, pre-refined along the expected crack path with a
mesh size of href = 3.5 mm, see Fig. 3(right), and four nested meshes to this one obtained by dividing
the mesh size by two for each level of refinement. The problem is solved with increments in the prescribed
vertical displacement of �uD = 10�3 mm and we iterate in the staggered scheme for each load step until
convergence is reached with a tolerance of 10�6.

Remark 4.1 (Boundary conditions). Imposing the vertical displacement at just one point causes unphysical
damage near the point. To cancel this out and impose properly the boundary conditions, we set the damage
to zero in the region after every iteration of the staggered scheme. Another strategy would be to assign a
higher value of GC where needed; see Yakovlev–Moxey–Kirby–Sherwin [20].

Comparison of FEM and HDG. We start by considering linear approximation functions. As expected,
the solution tends to converge when refining the mesh. This can be observed in the load-displacement
curves in Fig. 4, that show the evolution of the reaction force for an increasing imposed displacement uD .
We obtain similar results for both FEM and HDG, with slightly better accuracy in HDG. Recall that HDG
has a better order of convergence for the gradient of the displacement field J.

Spatial resolution. Using degree of approximation p = 1, the primary mesh with href = 3.5 mm is
not fine enough to approximate properly the smeared crack with ` = 3 mm. The smeared crack becomes
mesh-dependent and has a width of one element; see Fig. 5. In Fig. 6, we plot the damage field for di↵erent
imposed displacements of the loading process with the 2-nested level mesh. The crack path obtained in
this case is comparable with the results in the literature; see [1, 8].

Computation with high-order approximations. To increase the accuracy in space needed to capture
the profile of the solution, one can take higher degree p of the approximation basis functions. With p = 5,
we expect to obtain more accurate results than with p = 1 for the same mesh. Indeed, in Figure 7(left),
we compare the load-displacement curve obtained with degree p = 1 and the 4-nested level mesh with the
curves obtained for p = 5 and coarser meshes. In this case, using a higher-order degree of approximation
gives us the same order of accuracy in the solution and with less degrees of freedom. In Fig. 7(right), we
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Figure 4: Load-displacement curves for the L-shaped panel test when using p = 1 for both FEM and HDG.

Figure 5: Damage field obtained with HDG at an imposed displacement of uD = 0.45 mm. Degree of approximation
p = 1, primary mesh and ` = 3 mm.

Figure 6: Damage field at displacements (a) uD = 0.25 mm, (b) uD = 0.3 mm, (c) uD = 0.4 mm, (d) uD = 0.5 mm.
Degree of approximation p = 1, 2-nested level mesh and ` = 3 mm.
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Figure 7: Left: load-displacement curves obtained with p = 5. Right: damage field at uD = 0.45 mm for p = 5 and
the primary mesh.

Figure 8: Evaluating H at nodes. Damage field for uD = 0.247 mm. Whole body on the left, zoom on the right.
Degree of approximation p = 5, primary mesh. The solution obtained is unphysical.

note that solving for p = 5 with the primary mesh we no longer observe the mesh dependence we have for
p = 1 due to low spatial resolution.

Importance of evaluating H at integration points. As commented in Remark 3.1, if H is evaluated
at nodes and then interpolated to Gauss points, it can reach negative values when using shape functions
of degree p > 1. To illustrate this phenomenon, consider the L-shaped panel test with the primary mesh
and degree of approximation p = 5. If we evaluate H at nodes, the damage field d is no longer in the
interval [0, 1]. In Fig. 8, we can see the damage field obtained with this formulation for imposed vertical
displacement uD = 0.247 mm. Both the values of d and the pattern obtained are not a proper solution of
the problem: the damage field presents oscillations and gets a value of 1.2 at the corner.

For the next load step, corresponding to imposed displacement uD = 0.248 mm, the staggered scheme
does not converge. In Fig. 9, we plot the relative Euclidean norm of the di↵erence of consecutive iterates
for d and the maximum and minimum values of damage obtained. Notice that the absolute value of the
damage field gets arbitrarily large.
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Figure 9: Evaluating H at nodes. For imposed displacement uD = 0.248 mm, relative error of d (left) and
maximum/minimum values of d (right) for number of iteration. The staggered scheme does not converge in this
case.

5. Conclusions

We have proposed an HDG approach for phase-field models of brittle fracture using a staggered scheme that
enables to uncouple the system. We have compared this formulation with the classical FEM formulation
in a numerical example and both of them present the same behavior. As expected, the solution is more
accurate when refining the mesh or increasing the degree of approximation. With HDG we obtain better
accuracy than with FEM for the same mesh and degree of approximation, but at the price of a higher
computational cost; see [11, 21].

The main drawback of phase-field models is their ine�ciency coming from the remeshing needed if the
crack path is not known. The HDG formulation is interesting for this problem because of the suitability
of the method for adaptivity. The implementation of p-adaptivity and h-adaptivity for this formulation is
subject of ongoing work.
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